Getting Start Using TensorFlowBoard Part I

Instruction

codes as follows

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# Copyright 2015 Google Inc. All Rights Reserved.  
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""A simple MNIST classifier which displays summaries in TensorBoard.

This is an unimpressive MNIST model, but it is a good example of using
tf.name_scope to make a graph legible in the TensorBoard graph explorer, and of
naming summary tags so that they are grouped meaningfully in TensorBoard.

It demonstrates the functionality of every TensorBoard dashboard.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data


flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_boolean('fake_data', False, 'If true, uses fake data '
'for unit testing.')
flags.DEFINE_integer('max_steps', 1000, 'Number of steps to run trainer.')
flags.DEFINE_float('learning_rate', 0.001, 'Initial learning rate.')
flags.DEFINE_float('dropout', 0.9, 'Keep probability for training dropout.')
flags.DEFINE_string('data_dir', '/tmp/data', 'Directory for storing data')
flags.DEFINE_string('summaries_dir', '/tmp/mnist_logs', 'Summaries directory')



def tb2():
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
sess.run(hello)
train_writer = tf.train.SummaryWriter(FLAGS.summaries_dir+ '/train',
sess.graph)
a = tf.constant(10)
b = tf.constant(32)
tf.scalar_summary('accuracy', b)
tf.histogram_summary( 'sss/activations', b)
sess.run(a+b)
merged = tf.merge_all_summaries()
summary_str = sess.run(merged)
train_writer.add_summary(summary_str, 1)

if __name__ == '__main__':
tb2()

ref

tensorfly.cn